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INTRODUCTION

This paper will present the progress of an effort sponsored by the Armstrong Laboratory’s
Human Resources Logistics Research Division - Operations Branch (HRGO) which examined
the process of identifying corrosion data in aircraft using neural network optical image
processing techniques. Corrosion damage in aircraft is becoming a critical concern for the US
Air Force due to the increasing age of typical operational aircraft; i.e., among other factors, fewer
types and numbers of new aircraft are being produced. For example, an issue with the aging
C/KC-135 aircraft fleet is the hidden corrosion in lap joints. X-ray techniques that determine
percent material loss due to corrosion are perhaps the most reliable methods for assessing
corrosion damage, but they are costly, slow, and usually require significant aircraft disassembly.

For corrosion near aircraft exterior surfaces, corrosion by-products, which generally occupy
more volume than uncorroded material, often cause slight surface deformations or “pillowing”
that can be measured with various relatively inexpensive, rapid, and nondestructive optical
imaging techniques (Karpala and Hageniers, 1995). However, the relationship between percent
material loss and “pillowing” surface deformation is complex, and conventional methods for
quantifying the relationship generally lead to unacceptably low correct-detection probabilities or
unacceptably high false-call probabilities for the identification of corrosion from optical data
(Howard, Mitchell, and Tietz, 1995).

This paper considers the significantly more reliable relationship that might be established
using neural network technology.

BACKGROUND

D-Sight is a large-area corrosion detection technique from the Diffracto Ltd., in Windsor,
Ontario, Canada. This technique is recognized for its ability to detect pillowing. However, as a
rapid visualization technique dependent on the operator’s experience and judgment, it suffers
from a high false call rate. Neural network techniques may lead to better interpretation of the
data and thus result in reduced false call rates. This in turn will lead to significant benefits for
the Air Force by eliminating unnecessary maintenance activities.

METHODS

The results that characterize this possible advance are based on both x-ray and optical data
from an actual aircraft lap joint test coupon (coupon F) that has significant corrosion damage.
The x-ray data has gray scale proportional to percent material loss, and this gray scale is the
“truth” against which the optical data is compared. The optical data is from a commercial
“enhanced visual” system in which vertical surface deformations (which may be due in part to
corrosion-induced “pillowing”) are rendered as image gray scale variations.




RESULTS

This section will present the results through a series of figures from an actual corroded
aircraft lap joint. Figures 1 to 4 present the reference data upon which various spatial frequency
filters are tested for their ability to distinguish corrosion effects. Both static (figures 5 to 10) and
adaptive filter (figures 11 to 13) processing techniques were assessed.

X-ray and Optical Data

Figure 1 shows the x-ray data for the lap joint test coupon. The black regions indicate
fastener locations. The remaining gray scale is proportional to percent material loss due to
corrosion. The percent material loss is generally greater than 15 percent except in the boxed
region. This boxed area has much less percentage loss over approximately the right-most 60
percent of its area.

Figure 1. X-ray Data: Overview (top), Boxed Region (bottom)

Figure 2 shows the optical data for the lap joint test coupon. In this figure, gray scale has a
component related to vertical surface deformation, but the proportionality is nonlinear as is
evident from the crater-like appearance of the fastener locations. The same boxed region
indicated in Figure 1 is shown here (right). Note however, that the aspect angle, size (in both
length and width), and resolution (i.e., number of pixels) differs for the x-ray and optical data.




Figure 2. Optical Data: Overview (top), Boxed Region (bottom).

Figure 3 shows the x-ray data in the boxed region linearly transformed to cover a 100 by
200 pixel region and plotted in both gray scale and surface profile formats. Figure 4 shows the
optical data in the same boxed region also linearly transformed (including rotation to a normal
aspect angle) to cover the same 100 by 200 pixel region and also plotted in both gray scale and
surface profile formats.

These two figures contain the data to be related using neural network (or perhaps other
more effective) technology. Note that there is no apparent qualitative ("by eye") relationship.
Visual inspection clearly indicates that on the left portion of the x-ray there is corrosion; whereas
the right portion shows little or no corrosion (Figure 3). However, the optical data do not
visually indicate the same pattern of results.
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Figure 3. Transformed X-ray Data: Gray Scale Plot (top), Surface Profile Plot (bottom).

Figure 4. Transformed Optical Data: Gray Scale Plot (top), Surface Profile Plot (bottom).




Static Filter Processing
It is clear from Figures 3 and 4 that a successful supervised-learning neural network (or
other processor) would distinguish the right-most 60 percent of the optical data area as relatively
uncorroded compared to the remaining area. Accordingly, several low pass, high pass, and band
pass spatial frequency filters (which may be regarded as a priori-trained neural networks) are
tested for their ability to make this distinction.

Figure 5 shows the optical data of Figure 4 displayed in four contour plots with different
numbers of contour lines from minimum to maximum gray level. High contour line densities
indicate regions with relatively high spatial frequencies (i.e., steep slopes), and the identification
of these regions could be valuable in the selection of appropriate filters. However, none of the
contour plots display a significant and consistent contour line density increase or decrease in the
right most 60 percent of the data area.
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Figure 6 shows the impulse response whose Fourier transform best approximates a low
pass filter that retains all spatial frequencies below 25 percent of the full frequency range when
this impulse response is constrained to have zero values beyond an 11 by 11 pixel region. Figure
7 shows a contour plot for the transformed optical data processed with this filter and with a
similar low pass filter with an approximate cutoff of 75 percent. Figures 8 and 9 show similar
plots for high pass and band pass filters, respectively; in each case the impulse response was
constrained to have zero values beyond an 11 by 11 pixel region and the stated percentages
indicate the cutoff value or bandpass region.

Figure 6. Impulse Response Limited to 11 by 11 Pixels (left), Corresponding
Best-Approximation 25 Percent Low Pass Filter (right).
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Figure 7. Contour Plots (12 Contours) for Transformed Optical Data Processed with Low
Pass Filters: 25 Percent Approximate Cutoff (left), SO Percent Approximate Cutoff (right).




Figure 8. Contour Plots (12 Contours) for Transfofmed p)’ltical’ béta
Pass Filters: 25 Percent Approximate Cutoff (left), 75 Percent Approximate Cutoff (right).
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Figure 9. Contour Plots (12 Contours) for Transformed Optical Data Processed with Bandpass
Filters: 25 Percent to 50 Percent Approximate Range (left), 50 Percent to 75 Percent

~ Approximate Range (right).

Finally, Figure 10 shows contour plots for the transformed optical data after processing
with one of two smooth-cutoff filters. One plot corresponds to a uniform impulse response and
the other corresponds to a Gaussian impulse response of 1.5 pixel standard derivation, where
both impulse responses are constrained to have zero values beyond a 5 by 5 pixel region. Again,
none of the contour plots tends to display the desired significant and consistent contour line
density increase or decrease in the right-most 60 percent of the data area.
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Cutoff Filters: Uniform Impulse Response over 5 by 5 Pixels (left), Gaussian Impulse Response
with 1.5 Pixel Standard Deviation (right).

Adaptive Filter Processing

Since static filter processing proved to be ineffective (at least for the tested filters) in
relating the x-ray (training) and optical (testing) data, adaptive filter processing with the filter
synthesized using a radial basis function neural network technology (Ripley, 1996) was
attempted. The objective was to find a “custom” filter that, when applied to the transformed
optical data, would demonstrate a significant and consistent contour line density increase or
decrease in the right-most 60 percent of the data area. The synthesis (or training) procedure was
as follows:

(a) Locate eight 16 by 16 pixel arrays on the 100 by 200 pixel transformed optical data so
that fastener pixels are avoided and so that four of the arrays are in the rightmost 60 percent
of the data area (i.e., the relatively uncorroded area).

(b) Find the power spectrum for each array, and find the total power in the eight concentric
box rings for each spectrum. Designate y; as the total power in the jth spectrum box ring of
the ith of the four arrays in the right-most 60 percent of the data area, and designate x; as the
same quantity for the remaining four arrays (i=1,2,3,4andj=1,2, ..., 8).

(c) Solve the matrix equation w’Mc = d for ¢, where M is the 8 by 8 matrix that has x; as its
first four rows and y; as its last four rows, ¢ = (c;, ¢,, ..., Cg)' is a vector of unknown
coefficients, d=(1, 1, 1, 1, 0, 0, 0, 0) is a vector of dummy variables, and w = (1/4, 1/12, ...,
1/62)' is a vector of weights that equalizes the areas of the spectrum box rings.

(d) Form a set of eight ring boxes with each box assigned a successive coefficient value; the
result is the synthesized adaptive filter.



Figure 11 shows the synthesized adaptive filter and its impulse response. Figure 12 locates
the eight training regions (boxes) on the optical data before processing and shows the optical data
after processing with the adaptive filter. Figure 13 shows this data as a contour plot and also
displays the inner product zc as a gray-scale plot, where z is an eight-element vector of box ring
powers for all possible 16 by 16 pixel arrays in two pixel increments. It is clear from Figures 12
and 13 that the adaptive filter is not effective in distinguishing the relatively uncorroded right-
most 60 percent of the data area from the remaining area.
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Figure 13. Contour Plot (12 Contours) of Optical Data After Processing
(left), Gray Scale Plot of Inner Product ZC (right).

CONCLUSION

Neither standard static spatial frequency filters nor adaptive filters synthesized using neural
network technology appear to be effective for identifying corrosion damage in an aircraft lap
joint coupon using available optical data. As indicated in Section 2 above, qualitative visual
assessment of the optical data reveals no apparent distinction between corroded and uncorroded
areas. The human visual system can function as an exceptionally powerful neural network
pattern recognizer, and thus the inability of this system to identify any distinctive pattern in the
optical data that correlates with actual corrosion (as determined by the x-ray data) may be
ominous for the success of any artificial neural network technology applied to the same data.
Perhaps data from other test coupons for which possibly different corrosion processes could
produce more pronounced “pillowing,” would yield more positive results.
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